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ABSTRACT

An improved quasi-linear substitution method is developed to treat properly

the influence of a cubic static moment on the modal damping of a missile acted

on by quite general nonlinear damping and Magnus moments. The predictions of

this method are compared for various special cases with those of the more

accurate but much more complicated perturbation method. The new quasi-linear

theory predicts boundary curves for planar motion, almost circular motion and

almost planar motion which are quite close to those of the perturbation theory.

An original result of the theory is that all planar singular points for a non-

spinning missile whose moment coefficients are only functions of the total angle

of attack are nodes. That is, almost planar motion with amplitude close to that

of a stable planar limit motion will tend to that motion.
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TABLE OF SYMBOLS

ajk coefficients defined by Equation (17)

CD  drag coefficient

C L lift coefficient

C% static moment coefficient

C Md, C M q damping moment coefficients
& q

CM  Magnus moment coefficient
pa

E(k) complete elliptic integral of the second kind

H SA CL CD -kt2 (CM + CMj

Ho 0 II = t =o0

H2  cubic damping moment coefficient

I axial moment of inertiax

I = transverse moments of inertia
y z

K(k) complete elliptic integral of the first kind

K amplitude of the Jth mode

k modulus of the elliptic integrals

ka axial radius of gyration, x/mI2

kt transverse radius of gyration, =

reference length

YOU~ [k-2 C C]

M part of M which is function of 82

M* part of M which is function of (52)
'
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M 0M 1P 14

0 0

M2  cubic static moment coefficient

MIl non-linear moment coefficient

m mass

M25 3

m P

o max

M2
m2 W

M
0

P gyroscopic spin, P = - Vx

y
P/IA 1 1/2

p axial component of angular velocity

ri defined by Equation (87)

S reference area

s dimensionless distance along flight path

T +k=2=

T 0  T] C= 0

T 2  cubic Magnus moment coefficient

u, v, w components of velocity

V. magnitude of velocity, V = u + v + w

7 cosine of total angle of attack
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0 angle the flight path makes with respect to the vertical

Xj damping coefficient of the Jth mode

Ij defined by Equation (12)

v + iw

p air density

a coefficient of exponential density function

a alcoso

phase angle of the Jth mode

0 01l- 02

Superscript

derivative with respect to arclength, s

- complex conjugate

4quantity related to non-rotating coordinate system

Subscripts

c quantities evaluated for circular motion

p quantities evaluated for planar motion
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1. INTRODUCTION

In Reference 1, three different quasi-linear methods were described and

their different predictions of the nutational frequency for a missile with a

cubic static moment were compared with the exact result obtained by the use

of elliptic integrals. The best of the three was called the substitution

method and was employed to obtain the combined effect of a cubic static moment,

varying air density and both linear and nonlinear damping moments. Although
this approach was not as accurate as the perturbation method ' which uses the

exact elliptic function solution for no damping as the initial approximation,

it did give trends with a significant reduction in the necessary algebraic

work.

One difficulty with the substitution method was use of a rather strange

condition on the damping of the modal amplitudes:

,i0 l  ,i0 2
Kle + e (1)

A re-examination of this question has revealed a different substitution. method

which yields the same expression for the frequencies but does not make use of

Equation (1). This improved substitution method does lead to different ex-

pressions for modal damping which are the same as those for the earlier substi-

tution method for planar motion but are closer to those obtained from the

perturbation method for almost circular motion. It is the purpose of this

report to describe this new quasi-linear method.

2. THE IMPROVED SUBSTITUTION QUASI-LINEAR SOLUTION

The equation for the pitching and yawing motion of symmetric missiles can

be written in the form
2

+ (H Z' iP)r - (M + iPT)T = 0 (2)7

.where the various symbols are defined in the Table of Symbols.
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.. " + (H0 - ip) - (M + iPT)

(3)

= ~ ~ 1 - Z-0 -iL] + [(M - Mo) + iP(T- To)] i

where the zero subscript denotes the value of the aerodynamic quantities for

zero amplitude motion.

The left side of Equation (3) is the linearized version of Equation (2) and
has a solution in the form

O i l i02
~Kle + K2e(4

The primary interest of a missile designer is usually the behavior of the

modal amplitudes K This can conveniently be described by their logarithmic

derivatives

K j 
(5)

K j

For linear moments, the X ls are constants but when the moments are nonlinear

the various quasi-linear analyses obtain Xj's which are functions of K I and

K2•

We now differentiate Equations (4) twice, substitute in Equation (3) and

solve for the frequency and damping of the first mode.

(0)2 -o + M  - x(x + H x l

-i L2 -Plxl+Eo~ l - o ¢

1H -Ho 7"] [(X + '0l) + (X 2 ) e

K 2

M M+iP(T-T0 [1+Ke j(6)
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t ({2)[( 2 - PO +  o X2()2 + Ho) X ]

- i - P)X2 + H002 - P~o + 02] (I 1 )e'C2 6

where 0 = - 02

For linearized motion, all the terms on the right of Equation (6) vanish

except for the term in braces. Since the left side of the linearized Eq. (6)

is constant or slowly varying due to density or Mach number induced variations

of M0 , H0 , and T and spin or velocity variations in P, it can only equal the

periodic term in e on the right side if both sides are zero. This condition

yields the usual linear relations. The nonlinear terms on the right, however,

will in general be periodic but their average or d. c. components will not

necessarily be zero. This average will directly affect the terms on the left

side and it is the assumption of the quasi-linear method that the average is

the only influence of the nonlinearities on the frequencies and damping

exponents. We, therefore, average Equation (6) over a period of nutation* and

neglect the small damping term in comparison with M in the real part of this0

equation.II P
=T (H'H o'.) +02 e"

-( M f) [o+ iP(T-ToI [ 1 !R (_4

7 which is the cosine of the total angle of attack can be related to

J , the magnitude of the sine of the total angle of attack by the relation

Eallisticians frequently use the terms nutation and precession to distinguish
two modal oscillations. Nutation in this report has the classical meaning
assigned by top theory, i.e., the variation of the amplitude of the total
angle,j fl
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Y2 2 (8)

where B82 .11 2

52 can, then, be computed from Equation (4)

8 2 ,K 2 + K~+ K K2 (ei + -O
A

= K2- + + 2KK2 cos (9)

Since

' 2 2

2' = - (B 1 , (10)

" - 2y, 2(1- 5)

we see that y'/7 is an odd function of and, therefore, only affects the real

part of Equation (7). If we make the assumption that H and T are functions of

82 and, thereby, are even functions of 9 the following equations may be obtained

from Equation (7).

(11)

- I01 (12)
20lI P

where -'o + Cos

PT 1+ cos! +

Similar expressions apply for the other mode.
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This result differs from that of the substitution method of Reference 1

in the presence of 2 - P in the denominators of X, and X1 . In that report,
o f i

0 "2 appeared. This is the same as 20, - P for planar motion but differs

for other motions.

For small geometrical angles (7 4 0) and a cubic static moment

(M =M + M52), Equation (11) and the corresponding equation for the other

mode yield frequency relations which are identical with those of Reference 1.

A

where M = M -

M2

M
0

Equation (13) can be differentiated and substituted in Equation (12)

with the result:

221[ P+ + [ -m

0
L 1+ ( 01t~ +M PI [1 ] + 2( 2 )

41M P 1+ 2i4)

(1)
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A similar equation can be derived for the other mode.

I 2 m24~
- 2 [1 + m2 + 1+m( K2

PI~~ M (4 4
= ~0 X2- '0- L~ 2 m2 +~

4k 4M1 m2 (2K-21 +

(16)

Equations (15-16) may now be solved simultaneously for X and %2.

~j ji 4 J [2~ ja L -J +aJ(A

(17)

where the a jk' s are defined in the Table.

16



o C~
0

oo

+)

0+
H+

" oL 1HF"

+ 0 +0

+

++

00-

D+ + 00

E-11
r

++ + CK + +1

+ +

II Io II I

0~ _:t

+H H.~ + Cj

0 o 0a

+ S17



S ~+

+ A-

++

AU +

4-)

+ 3+

P14 if
C~ +

0 +0

Or CUj

C.CU

+ CU

+ CV 0 v

-4 lW. CYC Iqr-
+0

_,S 410 CUHn +
+ 

%

+ 
N

--+ +

+ +

N+

+

CU 
-

0i CU CU0 a

18



3. PLANAR MOTION

In the Table, values of the a jk' are computed for quasi-planar motion,

i.e., nutation between zero and bmx . For this motion, K1 = K 2 = K, max

= KI + K2 = 2K and the ratio of the maximum value of the cubic term to the

linear term is

m= M - 4m 2  (18)

o 1max

There are three types of cubic static moments which can cause a periodic

motion. These are shown in Figure 1 and may be described as follows2:

(a) Stable at small angles; more stable at larger angles (% < 0, M2 < 0);

quasi-planar motion of all amplitudes possible (m > 0).

(b) Stable at small angles; less stable at large angles (M0 < 0, M2 > 0);

amplitude of quasi-planar motion must be small enough to assure positive

M ( - 1 < m < 0).

(c) Unstable at small angles; stable at large angles Mo > 0, M < 0);
amplitude of quasi-planar motion must be large enough to ensure positive

average M (m < - 2).

Pure planar motion occurs when spin is zero. With zero spin, a number

of simplifications are possible.

Mo Mo  (19)

=- = - 1 (20)

= x= x (21)

* - f H [lcos4 +E sin d (22)
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2 21(2(1 + CoB A (5

2g (24)

(B = 40'K 2 sin(

2(4 + 3)%-8 ( M -6
= (25)

8+9m

If the cause of the variation in the coefficients is changing air density due

to entering or leaving an exponential atmosphere

o=_= =(26)
M0  M2  P

- .. a (26)

SX 2 =- 8+9m

Equation (27) was essentially derived by Coakley, Laitone and Mass 4 and

predicts that the amplitude of planar motion for a type (b) moment has an

upper bound imposed by the requirement - 8/9 < m. For linear damping, however,

the more exact perturbation method of Reference 2 yields the relation:
1'3

~l 2 2(l + ) (

where

b 0 = 4(1 + m)a2 - 2ma4  types (a) and (c)

= 2(2 + m - 2a2 - ma4 ) type (b)

20



-2 k_~2 1i - E~/~

a4 = (1/3) k_2  [2(1 + k 2 )a2 -

K = K(k ) complete elliptic intqal f t4e f~pst kind

Ep = E(k ) complete elliptic integral of the second kind

k2  (1 m) types (a) and (c)

-m
- type (b)

The coefficients of + in Equations (27) and (28) are compared

for the three types of moments in Figures (2-4). With the exception of the

vicinity of m = - 8/9, the quasi-linear substitution value is a reasonable

approximation of the more exact but quite complicated perturbation result.

4. ALMOST CIRCULAR MOTION

For almost circular motion, one modal amplitude is much larger than the

other and any static moment can be approximated by a cubic in the vicinity of

the amplitude of the circular motion. In the Table, the coefficients, ajk ,

are computed for K2 < < K,. (The coefficients for K, < < K may be obtained

by interchanging K1  and 1.) As in the case of planar motion, a number of

simple relations can be written for K2 < < K1 and constant spin.* (P= 0)

01-f+ 0(l+) (29)

l=~ - .//  o(l + 2m) (30)
02 ' P - 0" ~ *

If KI < < K2, the frequency equations are

01 =  + M (l + 2m); ' = T -. +M

21



x 4g + m)[O, - PTl 4 o1

0 0

0 Mo

l (32)

K2 CO ( 2 K 2)

4 ( + m) 1M~~ Y~4

+ + 1 + L(2 - (33)

Note that Equation (32) contains the very large quantity K1/K2 . For most

nonlinearities, the averaging process of the integral formally yields a

magnitude for X of the order of 10-2 and certainly much less than one. This

need for the average of a large periodic term to vanish would lead us to expect

Equation (32) to be less accurate than Equation (31). As we shall see, this

is a correct conjecture.
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2
The exact elliptic integral solution places the following limitations

on m:

type (a) no limitation (m > 0).

type (b) only possible circular motions are those for which

- 2/3 <m < 0 .

type (c) only possible circular motions are those for which

M is negative (m < - 1).

The presence of 2 + 3m in the denominator of Equation (33) is the first time

a quasi-linear approach has been able to indicate the completely unexpected

limitation on circular motions for a type (b) moment which was previously

obtained through the use of elliptic integrals. This result is the first

evidence of the value of the improved substitution method in comparison with

that of Reference 1. The fallacious indication of trouble for m = - 1/2 in

Equation (34) reinforces our concern 'Oor the value of the expressions for

damping of the small modal amplitude.

In order to derive an estimate for the accuracy of Equations (33-34), we

will now consider two special cases for which the coefficients are constants

(Mo = M2 = o).

2 +2m

-2ml + m) * (36)x2= T2_+3) (1l+ 2) 1 + 2  (6

These cases were treated by the perturbation method in Reference 2 and the

validity of our results will be determined by comparison with results of that

method.
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4. 1 CUBIC MAGNUS MOX=T

In the first example, we will consider a spinning missile with a cubic

Magnus moment (T TO + T2B
2 )

oI 
2

H 0 LE+ MI?(1 +3 + P TO + TAK
2 4- q 0(1 + m)

= - (2H° 0 1 + m ""P(2T°0 - H0+ 2T2 12

22 _=

0

* = H L -2 [/'-+ o(

= -(-4)FH 0 + 1l + 2m / P(2T 0 - H0 + 4T 2 K

A p
where P 1

When the damping coefficient of the large mode as given by Equations (35)

and (37) is compared with that obtained from the perturbation method 2 , we find

them to be identical' A comparison of the damping coefficients for the small

mode reveals that they do differ. A measure of the magnitude of this difference

can be obtained by considering the conditions for a circular motion singularity

which is a stable node. The location of the singularity is given by

Xi =y 73m [H 0 - 1 + m P(2T0 - H 0 + 2T 2 K ]= 0

(39)

24



Since small circular motion must grow and large circular motion must decay,

-1/2A
2H I + m P(2T-H < (40)

A (41)
PT2 < o 0l

These inequalities naturally are equivalent with those of Reference 2. The

final requirement is that in the vicinity of the singular point, almost

circular motion will approach circular motion.
*

x= < 0 (42)

By the use of Equations (38-39), T2 may be eliminated from Inequality (42).

2[ + 2 + m 1o l+ 2 ( 4o Ho) >O0

(43)

But Inequalities (40) and (43) for m outside the interval (-l, -1/2) may be

combined to yield

211+m 1/2 A[ 1/2 1/2+m ]I2 lH 0o< P4T 0- Ho0< 2 1i+2m + 2 1 +m 0

(44)

Outside the forbidden interval of - 1 < m < - 1/2 Inequality (44) requires that

H be positive and0

/2 (2T -H 021/2

l+ m < 2H < 1 + 2m + 2 1l+MI (45)

25



The corresponding inequality from Reference 2 is*

+m 1/< P(2T .  O) < 16+ +7ml 11 2H . r- ,1 €
These bounds are compared in Figure 5. As can be seen from the figure, the

upper bound is a good approximation.

4.2 CUBIC DAMPING MOMENTS AND ZERO SPIN

For a nonspinning missile, it has been shown5 that there are two cubic

damping moments which can affect the modal amplitudes:**

H H 0 + (% + M1 ll)82  (47)

M=M0 + M25
2 + Ml (5 ) (48)

Since we are concerned with almost circular motion (K1 > > K2 ), a much more

general moment can be considered. This moment will be approximated by

Equations (47-48) for almost circular motion. This moment can be written in

terms of the aerodynamic moment coefficients as***

Cm+ ic = i [c o + c2 b
2 + c*) t + d t (49)

1/2A A 1/2
The'Yof that report is 1 +mI Pfor m > - 2/3 and- P I1 + mI
for m < - 1.

The presence of MI1 in (47) is due to its definition as the coefficient of

t2 E' in Reference 5.

The good approximation t = i (q + ir) IV 1 has been made in Equation (49)

so that CM  and C appear as a sum.
q &2

26



where c = c ((2)) is a function of (b2)

d =d (52) is a function of 5
2

c*(o) = 0 and

d (0) =C M + Cqo Mo

The coefficients of the differential equation of pitching and yawing

motion assume the form

H A = ' ;OL C-k-2d] H(b2 ) (50)

M P-SI k;2  +c + =M0 +M 2 e +M(5 2 )(

If H and M are differentiable functions, they can be expanded about the
2'circular motion with amplitude 5c and amplitude derivative () .

H UHc + [d] (2 -2) (52)
cc

M= M + M22, [..,- 2' (53)
~L d() 0 s2

where H = H(b )
c c

J L7 2 2
8 C

[d M I 1 6 1

Ld(8jU [d(6) (52) *0

27



5 K1K oo
(52 21-(l

Cs)~ ~ ~ 02 -2KK(l)sin~

Equations (52-53) are essentially of the same form as Equations (47-48) but

allow us to consider much more complicated moments.

For these moments and almost circular motion,

m + ( .

c 1i 
__ _ _ _

d4 { + + W_

L c(d5)

The actual damping exponent for the larger mode can be obtained from Equations

(35) and (54) and is exactly that given by the perturbation method.

The conditions on X1 for a stable node at K1 = 8c are

c

According to Equation (36) the actual damping of the smaller mode near the

singularity (X -' 0) is X2 . For a stable node this must be negative.

28



•~ a c l

(59)

or

1dM A H < -1 (60)
[d(t)J 0 /Ldt7 IC l+m+s,

c

The corresponding inequality derived from the perturbation method is

These upper bounds are compared in Figure 6. It is interesting to note that

the M function is necessary for a circular limit cycle, i.e. M = 0 does

not satisfy Inequality (61).

5. ALMOST PLANAR MOTION

Another important special type of motion is almost planar motion (K1  K2 ).

For this case somewhat more lengthy algebra is required but fairly general

results are attainable. For planar motion K1  K2 = Kp and

2p
52 = 2K2(l + cos ') (62)
p p

(B )p - 2 sin(

Ip - J- Mo(4 + 3p) (64)

where m =

p M

If H and M are differentiable functions, they can be expanded about planar

motion with amplitude 2K .p

29



M . + I( .(8 ) (66)

[Mr ) (52)] 66

where the p subscript denotes quantities evaluated for planar motion with
8 8 and (8 2) (82)

p p

For a nonspinning missile,

+ .0 -- cos : 1 + lK ) (67)

In order to determine the character of a planar singularity amplitude plane,

differential equations should be derived for the neighborhood of the singularity.

The variables l and e2 are introduced for this purpose and squares of these

variables will be omitted in comparison with the variables themselves.

K K p(1 + ) (68)

82 _ 82= = 2(l + cos ) (1+ 62) (69)
p p

A,

0 = - 02

= (1/2) M 0 E4 + m (3+E, +~ 4 2 ) + M[4 +m(3 + 4e 1 +2e 2 ]]

62] (70)

(82'b (82 )p 01 2i1 ~'i p - K sinj

= + msin 4 + m (61 +6F2) (71)
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- - -- + (G -e2) (72)O A 2. +

• ". 1 = .p -1- -€ ) o

)• -[x- fo° 4 +2 (el €- 2Co

2] 
A

* e * (4 21  A4 l+m). ( , i

where 6-)cos

+ 2 [em invl+6.)sin inb pt nte

Lj '( (+ 32)sm

0 p

result reduced by routine algebra so that Equation (73) assumes the much
simpler form

xl xp  [(4]1p fj 8 ,+5m) 1 + mp 2 + + llm • )e2 r
2 16 +1 7m )E1 + 7mpe2 ] r 2 1 (73)

where r = J= o,2
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.- I cos° d j. o,2

[EL u~ fH coo

PP

Similarly

* M .* [Ei 1  {[ C +1 (8 + 'IM)El F16 + llm p)el + a mC21 ro2  p - p( + pip) f I 1

- [7m f + (16 + 17m )g] rj.(5

The numerical subscript on the outside of the bracketed expressions in the

definition of X j identifies that expression as a particular Fourier cosine

coefficient. It is quite surprising that the influence of H on X is completely
.

determined by its first order Fourier cosine coefficient. The influence of M ,

however, is specified by the zeroth and second order Fourier cosine coefficients

of its first derivative. These coefficients are computed for fixed modal

amplitudes, K, and therefore, are functions of these amplitudes.

For a planar singularity Xp = 0 and X can be computed from the following

special form of Equation (17)

Xj = ajlX1 + aJ2)2  (76)

where all a a 2(4 + 3m p)(8 + 7mp)

a 2 -a21 = W8 p)( + Y
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[H]

- 2(d + 5M) + ) + 2

. C 1+be (78)
2 2(b + N)(8+9M) [ 2 ]

2
where a o = e - m (8 + 3m t) + (12 8 +20n m e + 73M) rs

2
- (2m + 15m ) r.

b t 64 + 96m + 33m;i -3 m i (8 + 5mi) r(

2
-(12

8 +24 8 m P+ 105m) r 2

The differential equation for solution curves in the vicinity of a planar

singularity in the amplitude plane is

_E 2 ae1 +b2

According to Reference 6, the singularity must be either a saddle point or a

node. It is a node if a 2 b is negative and a saddle if a 2-_ b 2nis positive.

a 2- b 2 (a + b)(a -b)

=- 4(8 + 5m P )(8 + 9m JI) 2(2 +m p)(r 0+ r2)(8 + 5mpT

x [4 + 3mp)(l + 2ro) - 4(2 + 3m) r 2] (80)

*Note that if r 0and r 2vanish and m pis outside the interval (-2, - 8/9),
a2_b2is negative. Thus, if the aerodynamic moment coefficients are

functions of 8 alone and not functions of (b8 )', all planar singularities
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are nodes and almost planar motions near a planar singular motion will tend

to the planar singular motion if neighboring planar motions tend to the planar

singular motion.*

Another interesting special case is that when the moment coefficients

are precisely those defined by Equations (47-48)

[H] 1 2(%2 + M,)( (81)

dMd

d(5f)T P-Mll(82)
0

d(,2 l " o (83)

*.ro M- 11l (84i)

r2  = 0 (85)

Therefore, a planar singularity is a node if

(8 + gm )(8 +5m )(4 + 3P)( +2r 0)F[4 + 2m r(8 +5mp )>0 (86)

When m is outside the interval ( - 2, - 8/9) this Inequality is equivalent

to

- <- Mll 4< + 2P (87)

For circular singularities, Equation (60) shows the circular singularities

are always saddles if the moment coefficients are functions of 62 alone,

l - 0
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In Reference 3, the perturbation method was applied to almost planar motion

and after considerable tedious algebra, inequalities like (87) were obtained.

The lower bounds are identical but the perturbation method's upper bound is

expressed in terms of complete elliptic integrals and differs from that of

Inequality (87) when m p 0. These two boundary curves are compared inP
Figure 7. The much more easily derived bound of Inequality (87) is surpris-

ingly good.

SLMAHY

1. A quasi-linear substitution method has been derived on plausible

assumptions and compared with the more exact results of the more complicated

perturbation method.

2. The planar motion predictions are good when m is not near - 8/9.

3. The damping of the dominant mode of almost circular motion is exactly

predicted while the damping of the other mode yields approximately correct

stability boundaries.

4. The character of planar singularities can be reasonably well deter-

mined by this method.

5. In view of the above, the algebraically much simpler quasi-linear

method can be used to obtain approximate stability boundaries in the presence

of a strongly nonlinear static moment.
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